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Abstract 

In recent years, camera-based 3D object detection has gained widespread attention for its 
ability to achieve high performance with low computational cost. However, the robust-
ness of these methods to adversarial attacks has not been thoroughly examined, especially 
when considering their deployment in safety-critical domains like autonomous driving. In 
this study, we conduct the frst comprehensive investigation of the robustness of leading 
camera-based 3D object detection approaches under various adversarial conditions. We sys-
tematically analyze the resilience of these models under two attack settings: white-box and 
black-box; focusing on two primary objectives: classifcation and localization. Additionally, 
we delve into two types of adversarial attack techniques: pixel-based and patch-based. Our 
experiments yield four interesting fndings: (a) bird’s-eye-view-based representations exhibit 
stronger robustness against localization attacks; (b) depth-estimation-free approaches have 
the potential to show stronger robustness; (c) accurate depth estimation efectively improves 
robustness for depth-estimation-based methods; (d) incorporating multi-frame benign inputs 
can efectively mitigate adversarial attacks. We hope our fndings can steer the development 
of future camera-based object detection models with enhanced adversarial robustness. The 
code is available at: https://github.com/Daniel-xsy/BEV-Attack. 

1 Introduction 

Deep neural network-based 3D object detectors (Li et al., 2022b; Wang et al., 2022b; Huang et al., 2021; 
Liu et al., 2022a; Wang et al., 2022a; 2021; Lang et al., 2019; Vora et al., 2020; Zhou & Tuzel, 2018; Yan 
et al., 2018) have demonstrated promising performance across multiple challenging real-world benchmarks, 
including the KITTI (Geiger et al., 2012), nuScenes (Caesar et al., 2020) and Waymo Open Dataset (Sun 
et al., 2020). These popular approaches utilize either point clouds (i.e., LiDAR-based methods) (Lang et al., 
2019; Vora et al., 2020; Zhou & Tuzel, 2018; Yan et al., 2018) or images (i.e., camera-based methods) (Wang 
et al., 2021; 2022a;b; Li et al., 2022b;a; Huang et al., 2021; Liu et al., 2022a) as their inputs for object de-
tection. Compared to LiDAR-based methods, camera-based approaches have garnered signifcant attention 
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Figure 1: Adversarial nuScenes Detection Score (NDS) v.s. clean nuScenes Detection Score. Models that 
exhibit better performance on standard datasets do not necessarily exhibit better adversarial robustness. 

due to their low deployment cost, high computational efciency, and dense semantic information. Addition-
ally, camera-based detection exhibits inherent advantages in detecting long-range objects and identifying 
vision-based trafc signs. 

Monocular 3D object detection expands the capabilities of 2D object detection to 3D scenarios using carefully 
designed custom adaptations (Wang et al., 2021; 2022a). However, accurately estimating depth from a single 
image is challenging, often hindering the efcacy of monocular 3D object detection (Wang et al., 2022a). 
In contrast, using the bird’s eye view (BEV) representation for 3D detection ofers several advantages. 
First, it allows for joint learning from multi-view images. Second, the BEV perspective provides a physics-
interpretable method for fusing information from diferent sensors and time stamps (Ma et al., 2022). Third, 
the output space of a BEV-based approach can be easily applied to downstream tasks such as prediction and 
planning. Consequently, BEV-based models have demonstrated signifcant improvements (Li et al., 2022a;b; 
Huang et al., 2021; Huang & Huang, 2022). 

Despite the advancements achieved in 3D object detection algorithms, recent literature (Rossolini et al., 
2022; Cao et al., 2021; Tu et al., 2020) have begun to highlight their susceptibility to adversarial attacks. 
Such vulnerabilities pose signifcant safety risks, particularly when these algorithms are deployed in safety-
critical applications. Nevertheless, existing studies primarily concentrate on generating adversarial examples 
in limited scenarios, thereby failing to provide a comprehensive evaluation across a broader spectrum of 
adversarial settings and models. Motivated by this gap in the literature, we aim to conduct a thorough 
and systematic analysis of the robustness of various state-of-the-art 3D object detection methods against 
adversarial attacks, while also investigating avenues to bolster their resilience. 

Our investigation includes a spectrum of attack settings: pixel-based (introducing subtle perturbations 
to inputs) and patch-based (overlaying discernible adversarial designs onto inputs) adversarial examples, in 
white-box and black-box (whether information about the model is available to the attacker) setups. Our focus 
is on two main attack goals: misleading classifcation predictions and misleading localization predictions. 
Regarding pixel attacks, we apply the widely-used projected gradient descent (PGD) algorithm (Madry 
et al., 2017). To diferentiate this attack algorithm from the 3D detection method known as Probabilistic 
and Geometric Depth (Wang et al., 2022a), we refer to the former as PGD-Adv and the latter as PGD-
Det in the rest of the paper. To further enhance the comprehensiveness of our work, we additionally use 
FGSM (Goodfellow et al., 2014), C&W Attack (Carlini & Wagner, 2017) and AutoPGD Attack (Croce & 
Hein, 2020). Regarding patch attacks, we incorporate a gradient-descent-optimized patch (Brown et al., 
2017) centrally onto the target objects, adjusting its size accordingly with the object size. Additionally, we 
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probe the efcacy of universal patches, known for their strong transferability across varied scenes, scales, 
and model architectures. Overall, our experiments interestingly show that models that perform better on 
standard datasets do not necessarily yield stronger adversarial robustness, as shown in Fig. 1. We distill our 
key fndings as follows: 

• BEV-based models do not exhibit stronger robustness under classifcation attacks. However, they 
tend to be more robust toward localization attacks. 

• Precise depth estimation is crucial for models that rely on depth information to transform the 
perspective view to the bird’s eye view (PV2BEV). The incorporation of explicit depth supervision 
during training, as well as prior knowledge of depth constraints, can lead to improved performance 
and stronger robustness. 

• Depth-estimation-free methods have achieved state-of-the-art performance with clean inputs (Wang 
et al., 2022b; Li et al., 2022b; Liu et al., 2022a), we further fnd they have the potential to yield 
stronger robustness compared to depth-estimation-based ones. 

• Adversarial efects can be mitigated through clean temporal information. Models utilizing multi-
frame benign inputs are less likely to fail under single-frame attacks. However, it is important to 
note that errors can accumulate under continuous adversarial input over multiple frames. 

2 Related Work 

Camera-based 3D object detection. Existing camera-based 3D object detection methods can be broadly 
categorized into two groups: monocular-based approaches (Wang et al., 2021; 2022a) and multi-view image 
input bird’s eye view (BEV) representation-based approaches (Li et al., 2022b; Huang et al., 2021; Huang 
& Huang, 2022; Li et al., 2022a; Wang et al., 2022b; Liu et al., 2022a). Monocular-based approaches, such 
as FCOS3D and PGD-Det (Wang et al., 2021; 2022a), extend FCOS (Tian et al., 2019) to the 3D domain 
through specifc adaptations. BEV-based detectors perform PV2BEV and build BEV representations to 
conduct perception tasks. Inspired by LSS (Philion & Fidler, 2020), BEVDet (Huang et al., 2021) uses an 
additional depth estimation branch for the PV2BEV transformation. BEVDet4D (Huang & Huang, 2022) 
further improves performance by leveraging temporal information. BEVDepth (Li et al., 2022a) improves 
depth estimation accuracy through explicit depth supervision from point clouds. 

Given that inaccurate depth estimation is the main bottleneck of the above approaches, recent works explore 
pipelines without an explicit depth estimation branch. DETR3D (Wang et al., 2022b) represents 3D objects 
as object queries and performs cross-attention using a Transformer decoder (Vaswani et al., 2017). PETR (Liu 
et al., 2022a;b) further improves performance by proposing 3D position-aware representations. BEVFormer 
(Li et al., 2022b) introduces temporal cross-attention to extract BEV representations from multi-timestamp 
images. While these models show consistent improvement on the standard dataset, their behaviors under 
adversarial attacks have not been thoroughly examined, which could raise profound concerns, especially 
considering their potential deployment in safety-critical applications, e.g., autonomous driving. 

Adversarial attacks on classifcation. Modern neural networks are susceptible to adversarial attacks 
(Szegedy et al., 2013; Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2017), where the addition of a carefully 
crafted perturbation to the input can cause the network to make an incorrect prediction. (Goodfellow et al., 
2014) proposes a simple and efcient method for generating adversarial examples using one-step gradient 
descent. (Madry et al., 2017) proposes more powerful attacks (i.e., PGD-Adv) by taking multiple steps 
along the gradients and projecting the perturbation back onto a Lp norm ball. (Moosavi-Dezfooli et al., 
2017) demonstrates the existence of universal adversarial perturbations. (Brown et al., 2017) generates 
physical adversarial patches. (Wu et al., 2021) addresses adversarial robustness in the context of long-
tailed distribution recognition tasks. In addition to developing more powerful attacks, some works focus 
on understanding the robustness of diferent neural architecture designs to attacks. (Shao et al., 2021; Bai 
et al., 2021) conduct extensive comparisons between CNNs and Transformers and gain insights into their 
adversarial robustness. Diferent from these works which focus on classifcation problems, our research pivots 
to the detection tasks. 
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Adversarial attacks on object detection. Adversarial attacks for object detection can target both lo-
calization and classifcation. In the context of 2D object detection, (Xie et al., 2017) generates adversarial 
examples with strong transferability by considering all targets densely. (Liu et al., 2018) propose black-box 
patch attacks that can compromise the performance of popular frameworks such as Faster R-CNN (Ren 
et al., 2015). Given the importance of safety in autonomous driving, it is vital to study the adversarial 
robustness of 3D object detection. (Tu et al., 2020) crafts adversarial mesh placed on top of a vehicle to 
bypass a LiDAR detector. (Rossolini et al., 2022) studies digital, simulated, and physical patches to mislead 
real-time semantic segmentation models. (Cao et al., 2021) reveals the possibility of crashing Multi-Sensor 
Fusion (MSF) based models by attacking all fusion sources simultaneously. Despite the above works toward 
designing more powerful attacks, there still lacks a comprehensive understanding of the adversarial robust-
ness of camera-based 3D object detection. Though concurrent work (Zhu et al., 2023) also explores the 
adversarial robustness of 3D detectors, they study much fewer models. Our research represents a pioneering 
efort to systematically bridge this knowledge gap. 

3 Camera-based 3D Object Detection 

In this section, we provide an overview of the current leading approaches in camera-based 3D object detection, 
which can be broadly classifed into three categories: monocular-based detectors, BEV detectors with depth 
estimation, and BEV detectors without depth estimation. 

3.1 Monocular Approach 

This line of research aims to directly predict 3D targets from an image input. We select FCOS3D (Wang 
et al., 2021) and PGD-Det (Wang et al., 2022a) as representative works to study their adversarial robustness. 
FCOS3D extends FCOS (Tian et al., 2019) to the 3D domain by transforming 3D targets to the image 
domain. PGD-Det further improves the performance of FCOS3D by incorporating uncertainty modeling 
and constructing a depth propagation graph that leverages the interdependence between instances. 

3.2 BEV Detector with Depth Estimation 

This line of work frst predicts a per-pixel depth map, mapping image features to corresponding 3D locations, 
and subsequently predicts 3D targets in the BEV representations. Building on the success of the BEV 
paradigm in semantic segmentation, BEVDet (Huang et al., 2021) develops the frst high-performance BEV 
detector based on the Lift-Splat-Shoot (LSS) view transformer (Philion & Fidler, 2020). Subsequently, 
BEVDet4D (Huang & Huang, 2022) introduces multi-frame fusion to improve the efectiveness of temporal 
cue learning. BEVDepth (Li et al., 2022a) proposes to use point cloud projection to the image plane for 
direct supervision to depth estimation. Note that this approach can also incorporate temporal fusion, which 
we refer to as BEVDepth4D. We hereby aim to evaluate the robustness of these BEV models, ranging from 
the most basic detector (i.e., BEVDet) to spatial (Depth) and temporal (4D) extensions, against attacks. 

3.3 BEV Detector without Depth Estimation 

In this set of works, trainable sparse object queries are utilized to aggregate image features without the 
need for depth estimation. Representative exemplars include DETR3D (Wang et al., 2022b), which connects 
2D feature extraction and 3D bounding box prediction through backward geometric projection; PETR (Liu 
et al., 2022a;b), which enhances 2D features with 3D position-aware representations; and BEVFormer (Li 
et al., 2022b), which refnes BEV queries using spatial and temporal cross-attention mechanisms. These 
approaches claim to not sufer from inaccurate depth estimation intermediate and thus achieve superior 
performance. Our research takes a step further, probing the robustness of these approaches when subjected 
to adversarial attacks. 
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4 Generating Adversarial Examples 

In this section, we present our adversarial example generation algorithms. It is essential to note that this 
paper primarily focuses on understanding model robustness to attacks, rather than on the development of 
new attack algorithms. As such, our approach adapts established 2D adversarial attacks (Xie et al., 2017; 
Moosavi-Dezfooli et al., 2017; Madry et al., 2017; Goodfellow et al., 2014; Carlini & Wagner, 2017; Croce & 
Hein, 2020) for the 3D context, incorporating essential modifcations to ensure compatibility. Specifcally, 
we consider three attack settings: pixel-based white-box attacks (Madry et al., 2017; Xie et al., 2017), patch-
based white-box attacks (Liu et al., 2018), and universal patch black-box attacks (Moosavi-Dezfooli et al., 
2017). In the context of pixel-based and patch-based white-box attacks, we utilize two adversarial targets, 
namely untargeted classifcation attacks, and localization attacks. For patch-based black-box attacks, we 
focus solely on the targeted classifcation. The summary of these attacks is presented in Tab. 1. 

Table 1: A summary of the fve diferent attack settings implemented to examine the model robustness. 

White-box / Black-box Pixel / Patch Objective 

White-box Pixel Untargeted Classifcation 
White-box Pixel Localization 
White-box Patch Untargeted Classifcation 
White-box Patch Localization 
Black-box Patch Targeted Classifcation 

4.1 Pixel-based Attack 

Inspired by the approach in (Xie et al., 2017), we optimize the generation of adversarial examples over a set 
of targets. Let I ∈ RC×H×W be an input image, comprising N targets given by T = {t1, t2, t3, ..., tN }. By 
feeding the image I into 3D object detectors, we can have n perception results, capturing class, 3D bounding 
boxes, and other attributes, represented as f(I) = {y1, y2, y3, ..., yn}. Here, each yi symbolizes a discrete 
detection attribute such as localization, class, velocity, etc. We then compare these predictions with the 
ground truth bounding boxes T , establishing a match when the 2D center distances on the ground plane 
are under a predefned threshold, as employed in (Caesar et al., 2020). The goal of adversarial examples 
is to intentionally produce erroneous predictions. For instance, in classifcation attacks, the objective is to 
manipulate the model into predicting an incorrect class, denoted as fcls(I + r, ti) ̸= li, where fcls(I + r, ti) 
signifes the classifcation results on the i-th target, li represents its ground-truth classifcation label, and r 
denotes the adversarial perturbation. To accomplish this, we employ untargeted attacks, aiming to maximize 
the cross-entropy loss: 

N C1 jLuntargeted = − f (I + r, ti) log pij , (1)cls N 
i=1 j=1 

where C denotes the number of classes, and f j denotes the confdence score on j-th class. The adversarial cls 
perturbation r is optimized iteratively using PGD-Adv (Madry et al., 2017) as: 

ri+1 = Projϵ(ri + αsgn(∇I+ri L)). (2) 

To facilitate an equitable comparison, the confdence scores undergo normalization within the range [0, 1] 
by using the sigmoid function, which mitigates sensitivity to unbounded logit ranges (Wu et al., 2021). 
Maximizing Luntargeted can be achieved by making every target incorrectly predicted. For targeted attacks, 
we instead specify an adversarial label l ′ ̸= li for each target and minimize the following objective: i 

N1 li 
′ 

Ltargeted = [f (I + r, ti) − f li (I + r, ti)]. (3)cls cls N 
i=1 
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Figure 2: Illustration of adversarial patch size adaptations, wherein the patch size is adjusted proportionally 
to the target’s 2D bounding box dimensions. The left panel depicts a fxed-size patch, while the right panel 
presents a dynamically scaled patch. 

To attack the localization and other attributes, we adopt the straightforward L1 loss as the objective function, 
fnding this method adequately efective: 

N1 Llocalization = ||floc(I + r, ti) − loci||1 + ||forie(I + r, ti) − oriei||1 + ||fvel(I + r, ti) − veli||1. (4)
N 

i=1 

We further enhance our analysis by incorporating FGSM (Goodfellow et al., 2014), C&W Attack (Carlini 
& Wagner, 2017), and a stronger attacking method, AutoAttack (Croce & Hein, 2020). AutoAttack was 
originally designed for image classifcation tasks and can’t be applied to object detection tasks directly. 
Therefore, we employ AutoPGD, a component of AutoAttack, as a more potent attack strategy. Our 
implementation rigorously adheres to the confgurations specifed in the foundational AutoAttack paper. 
The enhancements we introduce to the AutoPGD attack compared with the original PGD-Adv include the 
following modifcations: (a) Integration of momentum during the update process, with the momentum. 
(b) Introduction of a dynamic step size that adjusts in accordance with the optimization process. (c) 
Implementation of a restart mechanism from the most efective attack points. (d) Balancing exploration and 
exploitation through the utilization of checkpoints. 

Note that implementing pixel-based attacks in real-world scenarios is challenging because it requires altering 
camera-captured images in real-time. However, considering this type of attack is still crucial, particularly 
when attackers possess full knowledge of the model and can engage with real-time systems. Moreover, we 
can glean insights into the robustness of 3D object detectors in this adversarial setting. 

4.2 Patch-based Attack 

Following (Liu et al., 2018; Rossolini et al., 2022), we next turn our attention to patch-based adversarial 
attacks. Considering a target within a 3D bounding box, it can be characterized by its eight vertices and 
a central point, collectively denoted as {co, c1, ..., c8} with ci ∈ R3. Leveraging the camera parameters, we 

′ ′ ′project these 3D points to 2D points on the image plane, yielding the transformed set {c , c1, ..., c8}. We seto 
the size of the adversarial patch to be proportional to the size of the rectangle formed by these 2D points, 

′and strategically position it to be centered at point c , as illustrated in Fig. 2. Note that the adversarial loss o 
objectives for the patch-based attack remain consistent with those detailed in Sec. 4.1. 

4.3 Black-box Attack 

Building on the concept of universal adversarial perturbations in classifcation tasks, as extensively explored 
by (Moosavi-Dezfooli et al., 2017), we delve into the potential existence of universal adversarial patches 
specifc to 3D object detection tasks. We start by defning and randomly initializing a fxed-size patch, which 
is then superimposed at the center of the object, as described in Sec. 4.2. We employ bilinear interpolation 
to resize this patch. During the training phase, we optimize the universal patch over a wide range of images 
using the Adam optimizer (Kingma & Ba, 2014), following the recommendations of (Moosavi-Dezfooli et al., 
2017). In the testing phase, we apply the generated patch to unseen images and evaluate its performance 
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Table 2: Overall results: Clean results are evaluated on nuScenes validation set, and adversarial results are 
evaluated on the mini subset. The adversarial NDS is averaged for all the attack types and severities. †: 
trained with CBGS Zhu et al. (2019), §: re-trained models with minimal modifcation since there is no 
publicly available checkpoint. BEV: BEV-based representations. Depth: Explicit depth estimation. 

Models Image Size #param BEV Depth Temporal clean NDS Adv NDS clean mAP Adv mAP 

BEVFormer-Smal 1280 × 720 59.6M ✓ 0.2623 0.1315 0.1324 0.0567 
BEVFormer-Base 1600 × 900 69.1M ✓ 0.4128 0.1585 0.3461 0.0833 

DETR3D 1600 × 900 53.8M ✓ 0.4223 0.1758 0.3469 0.1081 
DETR3D† 1600 × 900 53.8M ✓ 0.4342 0.1953 0.3494 0.1126 
PETR-R50 1408 × 512 38.1M ✓ 0.3667 0.1193 0.3174 0.0641 

PETR-VovNet 1600 × 640 83.1M ✓ 0.4550 0.1529 0.4035 0.0838 
BEVDepth-R50† 704 × 257 53.1M ✓ ✓ 0.4057 0.1493 0.3327 0.0923 

BEVDepth-R101†§ 704 × 257 72.1M ✓ ✓ 0.4167 0.1533 0.3376 0.1007 
BEVDet-R50† 704 × 257 48.2M ✓ ✓ 0.3770 0.1069 0.2987 0.0634 

BEVDet-R101†§ 704 × 257 67.2M ✓ ✓ 0.3864 0.1267 0.3021 0.0754 
BEVDet-Swin-Tiny† 704 × 257 55.9M ✓ ✓ 0.4037 0.1074 0.3080 0.0635 

FCOS3D 1600 × 900 55.1M - 0.3949 0.1339 0.3214 0.0714 
PGD-Det 1600 × 900 56.2M - 0.4089 0.1441 0.3360 0.0843 

BEVFormer-Small 1280 × 720 59.6M ✓ ✓ 0.4786 0.1593 0.3699 0.1007 
BEVFormer-Base 1600 × 900 69.1M ✓ ✓ 0.5176 0.1445 0.4167 0.0846 

BEVDepth4D-R50† 704 × 257 53.4M ✓ ✓ ✓ 0.4844 0.2144 0.3609 0.1211 
BEVDet4D-R50† 704 × 257 48.2M ✓ ✓ ✓ 0.4570 0.1586 0.3215 0.0770 

across various network architectures. The overall training pipeline for this approach is presented in Fig. 4(b), 
which simulates scenarios where attackers operate without detailed model knowledge or system access. 

5 Experiments 

5.1 Experimental Setup 

To thoroughly assess the model performance, we evaluate both the clean performance and adversarial ro-
bustness using the nuScenes dataset. Given the substantial computational resources required for a full 
dataset evaluation, we opt for the nuScenes-mini dataset when probing adversarial robustness. We report 
two metrics, Mean Average Precision (mAP) and nuScenes Detection Score (NDS) (Caesar et al., 2020), in 
our experiments and discussions. For candidate models, wherever feasible, we use the ofcial model confgu-
rations and publicly available checkpoints provided by open-sourced repositories; furthermore, we also train 
additional models with minimal modifcations to facilitate experiments in controlled environments. 

A holistic robustness evaluation necessitates examining models across varying degrees of attack intensity. 
Consequently, we introduce multiple severity levels for each attack — by increasing the iteration count 
for pixel-based attacks or by adjusting the size of the adversarial patch in patch-based attacks. For the 
detailed performance across these attack severities, interested readers are directed to the Appendix. Detailed 
parameter confgurations for each type of attack are provided below: 

Pixel-based Attacks. We evaluate pixel-based adversarial attacks using perturbations under the L∞ norm. 
Our experiment setup fxes the maximum perturbation value at ϵ = 5 and the step size at α = 0.1. The 
process begins with the introduction of Gaussian noise to randomly perturb input images. Subsequently, 
we progressively increase the number of attack iterations, ranging from 1 to 50, for both untargeted and 
localization attacks. The iteration halts if no prediction results align with the ground truth. For localization 
attacks, we adjust the adversarial objective to L1 loss of the localization, orientation, and velocity predictions 
while keeping all other settings unchanged. Given that the nuScenes dataset contains six images for every 
scene with minimal overlap, our attacks targeted individual cameras. For the AutoPGD attack, we use an 
iteration of 10, the momentum is 0.75 and the initial step size is 0.2ϵ. 

Patch-based Attacks. The initial patch pattern is generated using a Gaussian Distribution that has a 
mean and variance identical to the dataset. The attack iteration step size is designated as α = 5 and we 
maintained the iteration number at 50. The patch scale is incrementally increased from 0.1 to 0.4. 
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(a) Pixel-based untargeted attacks. (b) Pixel-localization localization attacks. 

Figure 3: Mean Average Precision (mAP) value v.s attack iterations. Models behave similarly under un-
targeted classifcation attacks while varying largely under localization attacks. All the models are similarly 
vulnerable to untargeted attacks while BEV-based exhibit better robustness toward localization attacks. 

Table 3: Overall results: The adversarial NDS is averaged over all attack severities. †: trained with CBGS Zhu 
et al. (2019), §: re-trained models with minimal modifcation since there is no publicly available checkpoint. 
BEV: BEV-based representations. Depth: Explicit depth estimation. #: Using temporal modeling. 
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0.1063 
0.0746 
0.0524 

0.1176 
0.1365 
0.1225 

0.0401 
0.0632 
0.0543 

0.1558 
0.1580 
0.1296 

0.1094 
0.1191 
0.0799 

0.2113 
-

0.2279 

0.1535 
-

0.1830 
PGD-Det 0.1696 0.0947 0.1105 0.0694 0.1126 0.0612 0.1621 0.1049 0.2437 0.1965 

BEVFormer-Small# 0.1727 0.0964 0.1221 0.0949 0.1746 0.0907 0.1810 0.1388 - -
BEVFormer-Base# 0.1328 0.0555 0.1312 0.1017 0.1689 0.0766 0.1910 0.1559 0.3018 0.2603 

BEVDepth4D-R50†# 0.2143 0.0969 0.1914 0.1488 0.2388 0.0960 0.2425 0.1687 - -
BEVDet4D-R50†# 0.1394 0.0473 0.1499 0.1031 0.1887 0.0633 0.2157 0.1358 - -

Black-box Attacks. In this black-box setting, we optimize the patch with the nuScenes mini training set 
(Caesar et al., 2020). We set the learning rate to 10, the patch size to 100 × 100, and the patch scale to 
s = 0.3. Our adversarial objective uses targeted attacks, as in Eq. 3. The goal is to misclassify all categories 
as “Car” and to mislabel “Car” as “Pedestrian”. In the inference stage, we apply the trained patch to unseen 
scenes and diferent models. To compensate for the occlusion efect induced by the patch, we set a baseline 
using a random pattern patch, and then assess the relative performance drop. 

Attacks for Temporal Models. It is worth noting that BEVFormer incorporates historical features for 
temporal cross-attention. This suggests that attacks on prior frames can afect current predictions. Thereby, 
we simulate scenarios where attackers continuously attack multiple frames by modifying every single frame. 
On the other hand, for BEVDepth4D and BEVDet4D, we attack the current frame while leaving the history 
frames untouched. Such a setting can let us probe if benign temporal information can help in mitigating 
adversarial efects. More discussions can be found in Sec. 5.3.3. 
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Figure 4: Left panel: The horizontal axis corresponds to the targeted model while the vertical axis denotes 
the source model. Transferability is quantifed by the proportional reduction in performance (specifcally, 
mAP) in comparison to a randomized patch pattern of identical size. Right panel: The pipeline of the 
optimization process for the universal patch. 

5.2 Main Results 

Our main results of PGDAdv Attacks are presented in Tab. 2 and Tab. 3. The Adv NDS and mAP are 
averaged across all attack types and severities, excluding only the black-box attacks. The results of the 
AutoPGD Attack are present in Tab. 4. The results of FGSM and C&W attacks can be found in Appendix A. 

Table 4: Results of AutoPGD Croce & Hein (2020) attack. 

Model NDS mAP mATE mASE mAOE mAVE mAAE 

DETR3D 
PETR 
FCOS3D 
PGD-Dev 
BEVDet 

0.1373 
0.0880 
0.1562 
0.1700 
0.0766 

0.0522 
0.0094 
0.0507 
0.0544 
0.0203 

0.9419 
1.0032 
0.8930 
0.8494 
1.0156 

0.5150 
0.6438 
0.4965 
0.5297 
0.6403 

1.0066 
0.8749 
0.9639 
0.8157 
1.0308 

1.2340 0.4311 
1.2613 0.6482 
1.0070 0.3380 
1.2942 0.3775 
1.1250 0.6847 

Overall, we interestingly note that all the existing camera-based detectors are vulnerable to adversarial 
attacks, e.g., the adversarial NDS of all models (except BEVDepth-4D) is lower than 0.2 for PGD-Adv 
Attacks. Furthermore, we fnd that AutoPGD can severely compromise the performance of the detection 
models by only leveraging 10 steps of iteration, as shown in Tab. 4. In terms of the attack categories, 
pixel-based attacks tend to be more malicious than patch-based ones, indicating that superimposing patch 
patterns onto target objects generally leads to less adversarial efects than pixel alterations. This fnding 
concurs with the understanding that adversarial patches, being modifcations of only specifc image segments, 
naturally cause restricted adversarial perturbations. Furthermore, we fnd that attacks that aim to confuse 
classifcation have a greater adversarial efect than those meant to mislead localization. This observation 
holds for both pixel-based and patch-based attacks. Nevertheless, as illustrated in Fig. 3, the discrepancy in 
model robustness is more pronounced under localization attacks, indicating a variable degree of vulnerability 
in accurately identifying object locations. 

For black-box attacks, adversarial examples from monocular detectors exhibit enhanced transferability, even 
to BEV-based models, as illustrated in Fig. 4(a). Universal patches trained using FCOS3D or PGD-Det 
demonstrate strong transferability among various models. For instance, transferring attacks from FCOS3D 
to PETR led to a relative performance decline exceeding 70%. On the other hand, BEVDet and BEVDepth 
produce adversarial examples with limited transferability and show reduced susceptibility to universal patch 
attacks. Notably, the patch maintains its adversarial nature even after resizing to diferent shapes and scales. 
Such a universal patch, spanning various images, models, and scales, presents a pronounced potential threat 
for camera-based detectors, especially given the zero-risk tolerance in autonomous driving contexts. 
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Figure 5: Comparisons between BEV-based models and non-BEV-based models. 
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Figure 6: Left: Comparison between non-BEV-based models and BEV-based models. Right: Comparison 
between depth-based and depth-free models. 

5.3 Discussions 

We next provide an in-depth discussion about these results. For better analysis, we primarily focus on 
three model components: BEV representation, Depth (i.e., the incorporation of an explicit depth estimation 
branch for BEV transformation), and Temporal Modeling (i.e., the ability to learn from multi-frame inputs). 

5.3.1 BEV-based Representations 

BEV-based models are generally vulnerable to classifcation attacks but show notable robustness 
to localization attacks. To probe if BEV detectors retain their superiority over monocular detectors under 
adversarial attacks, we select four models for comparison: BEVDet (Huang et al., 2021), BEVDepth (Li 
et al., 2022a), FCOS3D (Wang et al., 2021), and PGD-Det (Wang et al., 2022a), as they exhibit similar 
performance under standard conditions and all employ the ResNet101 backbone. As shown in Fig. 5, we 
can observe that BEV-based methods generally fail to showcase a clear advantage in terms of robustness 

10 



Published in Transactions on Machine Learning Research (01/2024) 

against untargeted attacks. However, we interestingly note that BEV-based models demonstrate superior 
performance under localization attacks — under the pixel-based localization attacks, the adversarial NDS of 
BEVDepth outperforms PGD-Det by about 53%. This conclusion is further corroborated in Fig. 6(a) and 
Fig. 6(b). 

5.3.2 Explicit Depth Estimation 

Precise depth estimation is crucial for depth-based models. Additionally, depth-free methods 
have the potential to yield stronger robustness. Our analysis suggests that models with more precise 
depth estimation capabilities typically exhibit enhanced robustness against adversarial attacks. As seen 
in Fig. 5, PGD-Det outperforms FCOS3D by leveraging superior depth estimation. This enhanced depth 
estimation results in consistent robustness improvement across all attack types. Additionally, the comparison 
between BEVDet and BEVDepth, which difer only in their depth estimation module, shows that the accurate 
depth estimation in BEVDepth can lead to a 39.6% increase in robustness. 

Furthermore, we found that depth-estimation-free approaches (Li et al., 2022b; Wang et al., 2022b; Liu 
et al., 2022a) generally show advantages over depth-based detectors under classifcation attacks (Fig. 6(c)). 
Interestingly, for localization attacks, depth-based models can outperform some depth-free models, if the 
depth estimation is sufciently accurate, as shown in Fig. 6(d). Nonetheless, DETR3D (Wang et al., 2022b) 
still shows the best robustness, suggesting that carefully designed depth-free methods have the potential for 
superior robustness. 

5.3.3 Temporal Fusion 

The efects of adversarial attacks can be mitigated using clean temporal information, but they 
might be exacerbated when multi-frame adversarial inputs are used. To investigate the impact 
of temporal information on adversarial robustness, we introduce two distinct attack scenarios. For the 
BEVFormer model, which updates its history of BEV queries on the fy, we attack each input frame. This 
results in all sequential inputs used for temporal information modeling being adversarial examples, causing 
an accumulation of errors within the model through retained temporal data. Our experiments reveal that 
the BEVFormer-Base model, when using temporal information, underperforms compared to its single-frame 
variant (i.e., 0.1585 v.s. 0.1445). To further demonstrate the infuence of temporal fusion, we simulate 
three cases: (a) Benign case: The model processes clean input across multiple frames. (b) Continuous 
adversarial attack: The model processes adversarial input persistently across multiple frames. (c) Single 
adversarial attack: The model processes clean input followed by adversarial input at a singular frame. We 
use the benign case as the ground truth and calculate the error on BEV temporal features according to 
it. The results presented in Tab. 5 further prove the observation. In the second scenario, we attack the 
current timestamp input while preserving historical information untouched. Under this condition, we test 
BEVDepth4D and BEVDet4D, which integrate features from the current frame and a recent historical frame 
in their predictions. As shown in Tab. 2, we observe that clean temporal information signifcantly reduces 
the adversarial efect in this scenario, with 0.1493 v.s. 0.2144 for BEVDepth, and 0.1069 v.s. 0.1586 for 
BEVDet. 

Table 5: Error between adversarial BEV features and benign BEV features under diferent frames. 

Scenario frame1 frame3 frame5 frame7 frame9 frame11 

Continuous adversarial attack 0.11 0.27 0.23 0.28 0.25 0.22 
Single adversarial attack 0 0 0 0 0 0.16 

5.3.4 Others 

Strategies specifcally designed to tackle long-tail problems can concurrently improve model 
robustness. Object detection often faces long-tail challenges, where certain categories like “Car” and 
“Pedestrian” are signifcantly more prevalent than others, such as “Motorcycle”. Our fndings suggest that 
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Figure 7: Comparison between diferent model sizes: For the same model, an increase in parameter size 
typically leads to enhanced robustness against adversarial attacks. 

strategies designed to address long-tail problems, such as class-balanced group sampling (CBGS) training 
(Zhu et al., 2019), can also improve robustness. Our results show that DETR3D trained with CBGS improves 
adversarial NDS by about 11%. This observation contrasts with (Wu et al., 2021), which suggested that 
resampling training strategies minimally impact robustness. Nonetheless, it is important to note that our 
study considers detection tasks, which are diferent from the classifcation tasks in (Wu et al., 2021). 

Increasing the backbone size consistently leads to improved robustness. We investigate the impact 
of diferent backbone architectures, including ResNet (He et al., 2016), VoVNet (Lee et al., 2019), and Swin-
Transformer (Liu et al., 2021), on the robustness of models. We frst compare Swin-Tiny and ResNet50, 
as their parameter sizes are similar (23.6M v.s. 27.5M). Although they perform slightly diferently under 
various attacks, the overall robustness of ResNet50 and Swin-Tiny is similar (i.e., 0.1069 v.s. 0.1074). On 
the other hand, the VovNet outperforms in both standard and adversarial robustness. Additionally, we fnd 
increasing the backbone size consistently leads to improved robustness. This trend is particularly noticeable 
for models with weaker robustness, as illustrated in Fig. 7. 

6 Ethical and Societal Considerations 

This study addresses the threats of adversarial attacks in camera-based 3D detection models, focusing pri-
marily on digital attacks. We emphasize the need to extend this research to include physical attack scenarios 
in future work, due to their signifcant potential impact on autonomous driving systems. Ethically, our re-
search highlights the crucial responsibility of developers to ensure the safety and reliability of these systems, 
especially in public spaces where they are more vulnerable to adversarial attacks. The broader impacts of 
our study underline the importance of integrating strong security measures in both the development and 
deployment of such technologies. This is vital to reduce the risk of harm to society and promote a safer, 
more ethical approach to using technology in critical safety applications. 

7 Conclusions 

We conduct an exhaustive analysis of adversarial robustness in camera-based 3D object detection models. 
Our fndings reveal that a model’s robustness does not necessarily align with its performance under normal 
conditions. Through our investigation, we successfully pinpoint several strategies that can enhance robust-
ness. We hope our fndings will contribute valuable insights to the development of more robust camera-based 
object detectors in the future. 
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A More Adversarial Attacks Results 

We provide the results of FGSM (Goodfellow et al., 2014) and C&W attack (Carlini & Wagner, 2017) 
in this section. The results can be found fron Tab. 6 to Tab. 9. We observe that in the context of 3D 
object detection, even single-step FGSM can compromise the performance of models to a large extent, which 
further reveals the vulnerability of these models. The attack efectiveness of the C&W attack is close to the 
FGSM attack. However, the C&W attack needs more steps to optimize, which might limit their real-world 
application usage. 

Table 6: Results of FGSM Classifcation attack. 

Model NDS mAP mATE mASE mAOE mAVE mAAE 

DETR3D 
PETR 
BEVDet 
FCOS3D 
PGD-Dev 

0.2259 
0.1501 
0.1427 
0.1712 
0.1848 

0.1406 
0.0710 
0.0603 
0.1104 
0.0865 

0.9066 
0.9419 
1.0925 
0.9319 
0.9440 

0.4804 
0.5616 
0.4855 
0.5034 
0.5292 

0.7946 
0.9664 
1.1231 
1.0274 
0.8091 

0.9122 0.3498 
0.9048 0.4789 
1.1421 0.3884 
1.3144 0.4053 
0.9069 0.3949 

Table 7: Results of FGSM Localization attack. 

Model NDS mAP mATE mASE mAOE mAVE mAAE 

DETR3D 
PETR 
BEVDet 
FCOS3D 
PGD-Dev 

0.2441 
0.1778 
0.1675 
0.1583 
0.1606 

0.2095 
0.1273 
0.1249 
0.0942 
0.0960 

0.8805 
0.9900 
0.9852 
0.9647 
1.0325 

0.4892 
0.4739 
0.4984 
0.4982 
0.5231 

0.7957 
1.0308 
1.0121 
0.9403 
0.9541 

1.1887 0.4413 
1.1836 0.3951 
1.2842 0.4655 
1.5566 0.4852 
1.0494 0.3963 

Table 8: Results of C&W Classifcation attack. 

Model NDS mAP mATE mASE mAOE mAVE mAAE 

DETR3D 
PETR 
FCOS3D 
PGD-Dev 

0.2765 0.2030 0.8686 0.4752 0.7202 0.8435 0.3419 
0.1656 0.1167 0.9507 0.4833 1.0228 1.5613 0.4938 
0.1119 0.0730 1.0815 0.5873 1.0157 1.0151 0.6586 
0.1585 0.0924 1.0400 0.5003 0.8569 1.3132 0.5195 

Table 9: Results of C&W Localization attack. 

Model NDS mAP mATE mASE mAOE mAVE mAAE 

DETR3D 
PETR 
FCOS3D 
PGD-Dev 

0.2793 0.1461 0.8809 0.4635 0.7118 0.5647 0.3165 
0.1681 0.0870 0.8943 0.4938 0.9151 1.3880 0.4513 
0.1217 0.0632 1.0194 0.5774 0.8748 1.4137 0.6470 
0.1485 0.0761 0.9929 0.5214 0.9067 1.3131 0.4745 

B Dynamical Patch v.s. Fixed-size Patch 

We compare the results of the dynamical patch and fxed-size patch. In our paper, we choose to use dynamical 
size patches because it is more physically reasonable. Real-world patch size changes according to distance 
from sensors. Attackers only need a smaller patch for pedestrians to fool the detectors while might need a 
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larger one for larger objects (i.e., Car and Bus). As a result, it is not reasonable nor fair to apply a fxed 
patch size to every object. To explain the diference, we calculate the detection results of each class, the 
comparison can be seen in Fig. 8. The results are evaluated using BEVFormer-Base(Li et al., 2022b) with 
temporal information on nuScenes(Caesar et al., 2020) mini validation set. We calculate the relative AP 
drop compared to clean input. 
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(a) Fixed-size patch. (b) Dynamical-size patch. 

Figure 8: Comparison between diferent patch size settings. 

Table 10: For PGD-Det model, the adversarial universal patch trained on nuScenes can transfer to KITTI. 

Type Easy Moderate Hard 

Clean 64.4 54.5 49.2 
Random Patch 53.6 44.4 39.4 
Adv Patch 44.2 37.2 32.8 

C Black-Box Transfer Attacks 

Here we provide the full results of universal patch-based black box transfer attacks as shown in Tab. 11 
and Tab. 12. We conduct universal patch attacks using BEVFormer-base(Li et al., 2022b) without tempo-
ral information, DETR3D(Wang et al., 2022b), PETR-R50(Liu et al., 2022a), BEVDepth-R101(Li et al., 
2022a), and BEVDet-R50(Huang et al., 2021). Among the above models, DETR3D(Wang et al., 2022b), 
BEVDet(Huang et al., 2021), and BEVDepth(Li et al., 2022a) are trained with CBGS strategy. Considering 
the occlusion induced by patches, we randomly initialize the patch with the same size to serve as the baseline. 
To further verify the transferability of the generated universal patch, we utilize the universal patch trained 
by PGD-Det to KITTI (Geiger et al., 2012) dataset. We show that the universal patch generated using 
nuScenes (Caesar et al., 2020) can efectively transfer to KITTI (Geiger et al., 2012), as shown in Tab. 10. 
This further validates the existence of universal adversarial patterns in 3D detection tasks. 

D Visualization of Depth Estimation 

We visualize the depth estimation results of BEVDet (Huang et al., 2021) and BEVDepth (Li et al., 2022a) 
in Fig. 9 to further show the importance of precise depth estimation for depth-based approaches. Due to 
the guidance from sparse LiDAR points, BEVDepth consistently yielded superior depth estimation results, 
contributing to its heightened robustness. 
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Figure 9: Depth estimation results. From left to right: original FRONT camera images, BEVDepth (Li 
et al., 2022a) depth prediction results, BEVDet (Huang et al., 2021) depth prediction results. Accurate 
depth estimation provides the model with strong robustness. 

Adversarial Source BEVFormer DETR3D PETR FCOS3D PGD-Det BEVDet BEVDepth 

Random Noise 0.2816 
BEVFormer 0.2663 
DETR3D 0.2767 

PETR 0.2561 
FCOS3D 0.2205 
PGD-Det 0.2357 
BEVDet 0.2760 

BEVDepth 0.2693 

0.3014 
0.2827 
0.2799 
0.2613 
0.2266 
0.2463 
0.2807 
0.2874 

0.2515 
0.2301 
0.2195 
0.1236 
0.0683 
0.1805 
0.2416 
0.2422 

0.2379 
0.2098 
0.1936 
0.1825 
0.0724 
0.1069 
0.2334 
0.2275 

0.2546 
0.2316 
0.2221 
0.1904 
0.0893 
0.0879 
0.2513 
0.2445 

0.1924 0.2380 
0.1676 0.2132 
0.1634 0.2017 
0.1256 0.1895 
0.1018 0.1410 
0.1186 0.1128 
0.1758 0.2283 
0.1829 0.2213 

Table 11: Universal patch black box attacks: full results of mAP. The X-axis represents the target models 
and Y-axis represents the source white box models. 

Adversarial Source BEVFormer DETR3D PETR FCOS3D PGD-Det BEVDet BEVDepth 

Random Noise 0.3179 0.3746 0.2857 0.2776 0.2919 0.2670 0.3206 
BEVFormer 0.3141 0.3589 0.2648 0.2475 0.2696 0.2254 0.2965 
DETR3D 0.3235 0.3609 0.2566 0.2264 0.2592 0.2177 0.2876 

PETR 0.2954 0.3412 0.1890 0.2127 0.2396 0.1769 0.2804 
FCOS3D 0.2604 0.3149 0.1125 0.1473 0.1669 0.1461 0.2336 
PGD-Det 0.2811 0.3350 0.2315 0.1733 0.1670 0.1552 0.2080 
BEVDet 0.3079 0.3672 0.2715 0.2734 0.2807 0.2551 0.3131 

BEVDepth 0.3140 0.3655 0.2687 0.2648 0.2750 0.2467 0.3011 

Table 12: Universal patch black box attacks: full results of NDS. The X-axis represents the target models 
and Y-axis represents the source white box models. 

E Full Results 

In this part, we list the full experiment results. We present the mAP and NDS metrics of all the models 
under 4 types of attacks (i.e., the attack iterations or the patch scale). For each attack, we use multiple 
attack severities to minimize randomness. We set the random seed to 0 for all experiments. The curves are 
plotted from Fig. 10 to Fig. 13. 
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Figure 10: BEVFormer full results. 
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Figure 11: DETR3D and PETR full results. 
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Figure 12: BEVDet and BEVDepth full results. 
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Figure 13: FCOS3D and PGD-Det full results 
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